## Introduction

to,Graph Theory drowing
A. P. Santika


Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

The template of this book is created by Mathias Legrand (legrand.mathias@gmail.com) with modifications by Vel (vel@latextemplates.com) under license: CC BY-NC-SA 3.0
First printing, December 2020

## Contents

1 Introduction ..... 5
1.1 Components ..... 5
1.2 Overview of the Game ..... 5
1.3 Drawing Simple Graphs ..... 5
1.4 Anatomy of Player Sheet and Cards ..... 6
1.4.1 Player Sheet ..... 6
1.4.2 Resource Cards ..... 7
1.4.3 Objective Cards ..... 8
1.4.4 Bonus Cards ..... 11
1.4.5 Extra Power Cards ..... 11
1.5 Scoring ..... 12
1.5.1 Components of a Graph ..... 12
1.5.2 Diameter of a Graph ..... 12
1.5.3 Degree of a Vertex ..... 13
2 Single-Player and Multiplayer Mode ..... 15
2.1 Setup ..... 15
2.2 Gameplay ..... 15
2.3 Endgame and Last Round ..... 16

## 1. Introduction

### 1.1 Components

Components included in this game are:

- 30 resource cards
- 60 objective cards ( 30 S objectives and 30 C objectives)
- 18 Bonus cards
- 18 Extra Power cards
- Player sheets


### 1.2 Overview of the Game

In this game, we will draw simple graphs using resources available to us: vertices, edges, and Eulerian (this resource acts as currency). To draw a graph, we need vertices and edges. We use Eulerian to use the effect of an active Extra Power.
Each round we will choose one resource card from the ones available in that round, one resource card usually contains a number of two different resources. There is also an active Extra Power for that round. This active Extra Power will change every round. For more details on how the game play, read Chapter 2.
There are also Objective cards available for us to claim if the graph we drew satisfies the requirement for them. There are two kinds of Objective cards, S (for subgraph) Objective and C (for component) Objective. We will go into details on the difference between these types in Subsection 1.4.3.

### 1.3 Drawing Simple Graphs

A simple graph consists of vertices (nodes or dots) and edges (lines) with the following restrictions:

1. Each edge connects exactly two different vertices.
2. There is at most one edge connecting two vertices.



Figure 1.1: Examples of graphs

- Example 1.1 The example on the left is a simple graph because every edge connect two different vertices and every two vertices only connected by one edge. Meanwhile, the example on the right contains one edge connecting the same vertex and two vertices connected by two different edges. So, this is a non-simple graph.

A few things to note when we draw edges are:

- we can only draw edges if there are two vertices that are still unconnected
- edges can be straight or curved
- the intersection of two or more edges is not a vertex

Please also note that we cannot place a vertex in the intersection of two or more edges. This is done to avoid confusion.


Figure 1.2: Intersection example

- Example 1.2 The graph on the left has two edges intersecting, the graph in the middle has two edges intersecting but also one vertex drawn right in the intersection. The only difference between these two graphs is the vertex in the intersection. This vertex does not change any configuration of the graph on the left.
On the other hand, the graph on the right contains no intersection between edges. Furthermore, this graph's edge configuration is totally different from the other two. While the other two graphs have 7 edges, this graph has 9 edges.


### 1.4 Anatomy of Player Sheet and Cards

In this section, we will take a look at player sheet and every different kind of cards. There are five different kinds of cards and 126 cards in total.

### 1.4.1 Player Sheet

This is the sheet that we will be using to play in this game and short explanation of each part of the sheet.


Figure 1.3: Examples of Resource card
The Eulerian track is used this way:

- Whenever we gain $N$ Eulerians, circle $N$ number of Eulerian coins in the track.
- Whenever we spent $X$ Eulerians, cross $X$ number of already circled Eulerian coins in the track. We cannot spend uncircled Eulerian coins or a crossed and circled Eulerian coins.


### 1.4.2 Resource Cards

When chosen, these cards will give us resources printed in the chosen card. We use these symbols for convenience: • for vertices, $\backslash$ for edges, and $e$ for Eulerians.


Figure 1.4: Examples of Resource card
If we chose the card on the top, we must draw 3 vertices and 1 edges, while the card on the bottom will give us 2 Eulerians and we also have to draw 3 edges.

### 1.4.3 Objective Cards

There are two types of objectives, $S$ (for subgraph) and $C$ (for component).

- S Objectives: player can modify the graph after the objective is claimed.
- C Objectives: player cannot modify the graph after the objective is claimed (after the objective is claimed, circle all the components needed for the objective, these components cannot be modified).
The term "modify" means adding edges or connecting other vertices to that particular graph.

R Even though we cannot modify any graph we claim for C Objective card, it is still possible to use this graph to claim other Objective cards.


Figure 1.5: Objective card anatomy

It is on the player's responsibility to notice that they have fulfil the requirement for a certain Objective card and if other players ask them to prove it, then the player must do so.


Figure 1.6: Example of claiming Objectives: Player sheet

- Example 1.3 In this example, the player satisfies the condition to claim Objective cards below. The reasons are as follow.


Figure 1.7: Example of claiming Objectives: Objective to be claimed

Definition 1.4.1 - Isomorphism. Two graphs are isomorphic if we can morph one graph to the other without changing the configuration of its vertices and edges. We can see that in the example above the graph on the left is isomorphic to the graph in C Objective card.


Figure 1.8: Transforming one graph to the other
Definition 1.4.2 - Subgraph. A subgraph is a graph contained in another graph, this includes all its vertices and all its edges. In this example, the graph on the bottom right contains the graph in S Objective card.


Figure 1.9: One graph is a subgraph of the other graph
(R) Labelling the vertices or the edges or both often helps us see more clearly isomorphism between graphs and whether one graph is a subgraph of another graph or not.

### 1.4.4 Bonus Cards

These cards will give us bonus points at the end of the game if we satisfy the requirement.


Figure 1.10: Bonus card anatomy
(R) There is one Bonus card that required us to construct a number of trees. In graph terms, a tree
is a graph with no cycle subgraph.

### 1.4.5 Extra Power Cards

Extra Power cards have various effects that we can apply to our game. To have access to the effect of the current active Extra Power, we have to spend our currency, Eulerians. The sum that we need to spend is printed on the Extra Power card. There will be a new Extra Power card every round.


Figure 1.11: Extra Power card anatomy

### 1.5 Scoring

We will use the same player sheet in Example $\mathbf{1 . 3}$ in to illustrate how we score in this game.


Figure 1.12: Player sheet example for scoring

### 1.5.1 Components of a Graph

In layman's terms, component of a graph is a subgraph that is not connected to other subgraph. We can see that the graph in the example above has 6 components. Below is the more rigorous definition.
Definition 1.5.1 A subgraph of a graph which every two vertices of that subgraph are connected and no other vertex connected to that subgraph is called a component.

We will define the term "connected" in a more precise manner in Definition 1.5.5.
In this game, we classify two types of components.

1. Trival component: consists solely of one vertex. These components contribute negatively to the score. Put how many trivial component one player have in "Trivial Comp.".
2. Non-trivial component: as the name suggest, this component consists of more than one vertex. Put how many non-trivial component one player have in "Component".
So, we score $\mathbf{4}$ in "Components" and $\mathbf{- 2}$ in "Trivial Comp." for our example.

### 1.5.2 Diameter of a Graph

Before we dive into the definition of diameter of a graph, we have to define a few things.

Definition 1.5.2 A path between two vertices $a$ and $b$ is an alternating sequence between vertices and edges which start at $a$ and finish at $b$. The length of a path is the number of edges in that path.

Definition 1.5.3 Distance between two vertices $a$ and $b$ is the shortest path from $a$ to $b$.
Here is the example of the concept above.


Figure 1.13: Path, length of path, and distance example

We can see that the sequence $a, 1, m, 2, n, 3, p, 4, b$ is a path with length 4 while the distance between $a$ and $b$ is 3 , with one of the path between $a$ and $b$ of length 3 is $a, 1, m, 2, n, 5, b$.
Definition 1.5.4 Diameter of a graph is the greatest distance between any pair of vertices in that graph.

The diameter of the graph in our example is 3 . So we put $\mathbf{3}$ in "Diameter".

Determining the diameter of a graph is a bit trickier than other scoring components. So, please be patient when scoring this. It is easier to do this for each graph component first, then comparing the diameter between components. The highest one is the diameter of that graph.

We will go further into this concept. But before that, we need to define one more thing.
Definition 1.5.5 Two vertices $a$ and $b$ are connected if there is a path that starts from $a$ to $b$ or the other way around.
If there is no such path, then $a$ and $b$ are disconnected.
Mathematically speaking, if two vertices are disconnected, their distance is infinite ( $\infty$ ). That is why in this game, we ignore all disconnected pair of vertices. This means that we do not need to consider the distance of any two vertices that come from different components, including trivial components.

### 1.5.3 Degree of a Vertex

We move on to the last concept in graph theory used in the scoring for this game.
Definition 1.5.6 Degree of a vertex is the number of edges that come out of that vertex. Naturally, the maximum degree of a graph, usually noted as $\Delta$, is the maximum degree of its vertices.

In our example we have the maximum degree is 5 . So we put 5 in "Max. Degree".
Let us say that the player in the example claim no other Objective cards besides these two:


Figure 1.14: Example of claiming Objectives: Player sheet
and successfully finish the objective in the Bonus card:


Figure 1.15: Example of claiming Objectives: Player sheet

This will give the player an additional 24 points in "Objective" and $\mathbf{8}$ points in "Bonus".
The last one to consider is Minus Points. We put the number on the left-most uncrossed box as our number. If all the boxes are crossed, then we put -17 in our Minus Points. For our example, we put $\mathbf{- 6}$ in 'Minus Points"'. So, our total score for this sheet is $4+3+5+24+8-2-6=36$. If this player has other sheets, then they also score those sheets using the same rules for each of their sheet. The total score is the sum of all their total score from every sheet.
Let us say that for this example, this is the only sheet we played, then our total score is 36 .

| Components | Diameter | Max. Degree | Objectives | Bonus | Trivial Comp.\|Minus Points | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 5 | 24 | 8 | -2 | -6 | 36 |

Figure 1.16: Final score

## 2. Single-Player and Multiplayer Mode

Let E be Edge, V be Vertex, and P be Number of Players.

### 2.1 Setup

1. Shuffle Extra Power cards deck, draw one and place them face-up. Place the rest of the deck face-down.
2. Shuffle $S$ and $C$ objective cards deck, draw five then place them face-up. Place the rest of the deck face-down.
3. Shuffle resource cards, draw two cards then place them face up. Place the rest of the deck face-down.
4. All players gain 2 Eulerians.
5. (Optional) Shuffle Bonus deck and dealt two cards to each player. Each player then discard one face-down and keep one near their playing area, keep them secret until the scoring phase.
(R)

If you use Bonus deck, this will limit the player count to 2-10 players, as there are only 20 bonus cards. We can skip this step if we want to play with more than 10 players.

### 2.2 Gameplay

1. Every player choose one card from the 2 face-up resource cards. Player can choose the same card already chosen by other player.
2. Every player have to draw all vertices and edges according to their chosen card+modifier (this modifier tied to face-up Extra Power card), if you cannot draw all the edges you have to draw, cross the box on Minus Points for each edge you cannot draw starting from the left-most uncrossed box. Every player gain Eulerian according to their chosen card.
During this phase, any player can use the face-up Extra Power card once (except stated otherwise by the card) by paying its price.
3. After every player gain their resources, each player can claim at most ONE objective card per round. As there is no turn order, the fastest player who claim the objective card is the
one who will probably get the card. Other players can ask for proof of the legitimacy of the claim. The player who claim the card has to prove them.
If the player cannot prove the claim or the proof is wrong then they return the card and cross the left-most uncrossed box on their Minus Points. If the claim is proven then the player take the claimed objective card and store them near their player area. Draw a new objective card to replace it.
If no player contested the claim, then that player automatically get the card. Also draw a new objective card to replace it.
4. After all the player have their chance to claim objective cards, every player has the chance to discard all the objective cards and replace them with five new objective cards drawn from the deck, this action is called refresh. The player who refresh the objective cards must cross two boxes from their Minus Points, starting from the left-most uncrossed box.
5. Discard the face-up Extra Power card and draw a new one to replace it.
6. Discard all the face-up resource cards then draw two new cards and place them face up.

If during any of the phase, there exist a player who cannot cross the box from their Minus Points, then that player cannot draw anything on their sheet and must take a new sheet with the first two left-most boxes on their Minus Points crossed. This player can resume the game on their new sheet. The player with multiple sheets will score from all their sheet, including all their Minus Points.
If, at anytime any player has to draw a new Objective card and the Objective cards deck is empty, shuffle all discarded Objective cards pile to create a new Objective cards deck. Draw new Objective cards from this pile.

### 2.3 Endgame and Last Round

The game ends on the round when resource cards deck ran out. This last round proceeds until Step 3 of the gameplay (Subsection 2.2). If the Bonus cards deck is used in this game, all players reveal their Bonus card so the other players can see. Count the final score according to the rule in Subsection 1.5. The player with the highest score win the game. The tie-breaker is the following:

1. The player with the least crossed Minus Points boxes.
2. The player with the least trivial components.
3. The player with the highest maximum degree.
4. The player with the highest diameter.
5. The player with the most components.

If there is still a tie, then they share the same position.

HOW THE ROUND PLAY:

1. Choose one from 2 face-up resource cards
2. Gain vertices and edges and draw them, gain Eulerian, spend Eulerian on Extra Power
3. Claim at most ONE objective card
4. Resolve any dispute if any
5. Refresh Objective card if any player desires to
6. Discard Extra Power card and draw a new one
7. Discard resource cards then draw two new cards The game ends when the resource cards deck is depleted. Proceed to Scoring phase.


MINUS POINTS
Cross the left-most uncrossed box if you

1. cannot draw an edge
2. cannot prove your claim
3. do refresh action, cross two boxes

If you cross all 8 boxes and you have to cross another box,

1. store your sheet, do not draw anything there until the end of game 2. gain a new sheet, cross the first two left-most boxes
2. resume play in the new sheet

## SCORING

Each player do the following:

1. COMPONENTS: Count the number of non-trivial components
2. DIAMETER: Determine the greatest distance between any pair of vertices
3. MAX. DEGREE: Determine the maximum of all degree of vertices.
4. OBJECTVES: Count all scores from claimed Objective Cards
5. BONUS: Put the score if you succeed in fulfilling the condition
6. TRIVIAL COMP:. Count the number of trivial components times -1
7. MINUS POINTS: Put the number in the left-most uncrossed box, or - 17
8. Add the number in Step 1-7
9. Do Step 1-8 for your other sheets then add them together

## TIE-BREAKER

1. The least crossed Minus Points boxes.
2. The least trivial components.
3. The highest maximum degree.
4. The highest diameter. 5. The most components.


## Introduction

 to,Graph Theory drowingNever use Extra Power
Have no component
with more than 12
edges


| It is also called Wagner graph. It is a part of Möbius |
| :--- |
| ladders family. It is obtained by cross-connecting |
| two ends of a ladder graph. If you are familiar with |
| Möbius strip, it is also clear why it is named so. |
| M |


(2)


\begin{tabular}{|c|c|c|}
\hline  \& F-

$\stackrel{0}{\text { m }}$

0 \& $$
\begin{array}{|c} 
\\
\hline
\end{array}
$$ <br>

\hline
\end{tabular}




| C | $\mathrm{W}_{7}$ | 13 |
| :--- | :--- | :--- | :--- |

In graph the vertices.


| S <br> A graph is complete if every vertex is adjacent to <br> every other vertex. We can also see it like this: <br> a graph is complete if we cannot add any more <br> edges to that graph. |
| :--- | :--- |



(20)

(2)


| S | Krachkardt Kite | 13 |
| :---: | :---: | :---: |
| This graph his named after David Krachkardt who <br> first use this graph in social network theory. |  |  |


| Bicorn |
| :--- |
| S |
| This graph and its cousin, Tricorn, played important |
| roles in solving several problems in graph theory, |
| one in particular is Lovaisz conjecture. |





(2)



| S | Twindragon Level 2 | 16 |
| :---: | :---: | :---: |
| $\begin{array}{l}\text { It is self.explanatory on why the name of this } \\ \text { graph is twindragon level 2. }\end{array}$ |  |  |


| S |  |  |
| :--- | :--- | :--- |
| c |  |  |

$\underbrace{0}_{\text {Resurres }} 0$






| $1 \begin{array}{ll} 0 \\ 0 & 0 \end{array}$ |  | $\left[\begin{array}{ll} 0 \\ 0 & 0 \\ \text { Renemers } \end{array}\right.$ |  | $\left[\begin{array}{ll} 0 \\ 0 & 0 \\ \text { Resemire } \end{array}\right.$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\begin{array}{ll} 0 \\ 0 & 0 \end{array}$ | 2 I | $0$ | $2 乙$ | 00 |  |


| meme | 成 | $\cdots$ |
| :---: | :---: | :---: |
|  |  | $\cdots$ |
|  |  |  |
|  |  |  |
| (eele |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

